BLUE WATERS SUSTAINED PETASCALE COMPUTING

Data: Creation, Management, Transfer, and Sharing

Ryan Mokos

Outline

- Storage system overview
 - File system sizes, quotas, and structure
- Data creation
 - Maximizing IO performance
 - Lustre characteristics including striping
- Data management
 - · File sizes, number of files, and compression
- Data transfer
 - Globus Online for transferring files
- Data sharing
 - Active Project Data Share Plan
 - Community Data Share Plan

GREAT LAKES CONSORTIUM

Blue Waters 11-Petaflop System

100 × 40 G D E

FDR IB

FDR IB

28 x Dell R720 IE nodes
2 x 2.1GHz w/ 8 cores
1 x 40GbE
GridFTP access only

High Performance Storage System

Lustre 2.1: > 25PB @ > 1TB/s

1GbE

Core Servers 2x X3580 X5 8x8 core Nehalems **RHEL 6.3**

HPSS Disk Cache 4 x DDN 12k 2.4PB @ 100GB/s

16Gb FC

Mover nodes (GridFTP, RAIT) 50 x Dell R720

2 x 2.9GHz w/ 8 cores

2 x 40GbE (Bonded)

RHEL 6.3

GridFTP access only

6 x Spectra Logic T-Finity 12 robotic arms 360PB in 95580 slots 366 TS1140 Jaguars @ 240MB/s

Lustre (Online) Storage Summary

Filesystem	Total Usable Space	Quota	OSTs (Object Storage Target)	Backed Up	Purge Policy
/home	2.2 PB	1 TB / user	144	Daily	No
/projects	2.2 PB	5 TB / group	144	Daily	No
/scratch	22 PB	500 TB / group	1440	No	30-day

- All filesystems visible from compute nodes
 - Can run application from any filesystem, but scratch highly preferred, especially for heavy I/O
- /home and /projects backed up daily saved for 30 days
- /scratch
 - 30-day purge policy
 - Not backed up archive checkpoints and results regularly

HPSS (Nearline) Storage Summary

- Tape Capacity: 300 PBs (usable)
 - Robotic tape libraries => large seek time
- Disk cache: 1.6 PB (usable)
- Bandwidth: 100 GB/sec (sustained)
 - 50 mover nodes
- Designed for large files (multi-GB+)
- Same /home and /projects directory structure as Lustre
- 5 TB user quota, 50 TB group quota
- GridFTP access only no ssh

Quotas

- Check quota via
 - Command line: quota
 - Blue Waters portal under "Your Blue Waters" tab

 Submit a ticket to request exceptions/changes to storage policies (e.g., quota increase)

Data Creation - Considerations

- IO through LNET routers
 - Via Gemini network
 - LNETs = orange spheres
 - Scattered throughout torus
- Object Storage Targets (OSTs)
 - 1440 for /scratch
 - 144 each for /home and /projects
 - ~14 TB / OST
- Meta Data Server (MDS)
 - Only 1 per Lustre filesystem

Data Creation – Best Practices

- Distribute IO throughout the system
- Balance between file size and number of files
 - Writing
 - Avoid creating hundreds of thousands of tiny files
 - Avoid creating a single huge file for a large job
 - One file per node is often a good starting point
 - Reading
 - Avoid reading in hundreds of thousands of files
 - Avoid having all processes read the same file
 - Consider read followed by broadcast
- Lustre striping
 - Default no striping
 - Stripe large files across multiple OSTs
- Create subdirectories avoid putting 100k files in one directory

Data Creation - Resources

- Several IO libraries available
 - NetCDF, HDF5, etc.
- Darshan library
 - IO profiling
 - Module loaded by default
- Blue Waters portal pages
 - IO libraries: https://bluewaters.ncsa.illinois.edu/io-libraries
 - Lustre striping: https://bluewaters.ncsa.illinois.edu/storage
 - "Application IO on Blue Waters" presentation:
 https://bluewaters.ncsa.illinois.edu/c/document_library/get_file?
 uuid=d70b1e4f-c733-495e-833c-85d4d36c0ae9&groupId=10157
 - Darshan: https://bluewaters.ncsa.illinois.edu/darshan

Data Management

- Tar up large numbers of small files
 - Multi-threaded ptar module available for compression while tarring (tar -z ...)
 - Aim for hundreds of MBs to tens of GBs range for apps with a lot of data
- Perform longer/CPU intensive file operations on compute nodes (single-node jobs)
 - E.g., large tars, file copies, etc.
 - Eases burden on login nodes faster for everyone
 - Run in interactive CCM (Cluster Compatibility Mode)
 - qsub -I -lnodes=1:ppn=32:xe -lgres=ccm
 - Portal: https://bluewaters.ncsa.illinois.edu/cluster-compatibility-mode

Data Transfers

- Lustre ⇔ Lustre
 - /home, /projects, /scratch all independent
 - mv between file systems = cp + delete
 - Serial with cp: ~1.5 Gbits/s
- Lustre ⇔ Nearline
 - Must use GridFTP client (Globus, UberFTP)
- Blue Waters other sites
 - Use GridFTP client (Globus)
 - Do not use scp, rsync, or sftp
 - Hard on login nodes and slower

Globus Online (GO)

- GO GridFTP client
- Parallel file transfer
 - Up to 20 files in flight per transfer
 - Up to 3 simultaneous transfers
- GO uses mover nodes
 - Lightens load on logins
- Web GUI and Command Line Interface (CLI)
- GUI vs. CLI
 - Limit on viewable files in GUI
 - CLI cumbersome but more powerful

Using Globus Online GUI

- BW Portal
 - Documentation: https://bluewaters.ncsa.illinois.edu/data-transfer-doc
 - GO access: https://bluewaters.ncsa.illinois.edu/data
- Use Globus Connect to create local endpoints for your own computer/cluster

Globus Online Web GUI

- BW endpoints
 - ncsa#BlueWaters
 - ncsa#Nearline
- Advantages
 - Easy transfers
 - Select src/dest
 - Select files/dirs
 - Click arrow
 - Simple option selection
- Limitations
 - Some parameters inaccessible
 - 10k file max listing
 - Sometimes < full concurrency

GO CLI (Command-Line Interface)

- Advantages
 - Powerful access to all features and parameters
 - Can use commands in scripts
 - Full concurrency
- Disadvantages
 - Takes a little time to learn
 - Verbose
- Transfer example:
 - ssh cli.globusonline.org "transfer -- \
 ncsa#BlueWaters/scratch/sciteam/<username>/a_file \
 ncsa#Nearline/u/sciteam/<username>/a file"

CLI Usage

- Either ssh into cli.globusonline.org or include ssh cli.globusonline.org at the beginning of each command
- Transfers
 - Use transfer command on individual files or on entire directories with -r
 - Check transfers with status command
 - Use cancel to stop a transfer
- Basic file system commands: ls, mkdir
- For examples, see the BW Portal
- For a complete listing and man pages, ssh into cli.globusonline.org and type "help"

Optimizing Globus Online Performance

- On-site (Lustre | Nearline Lustre | Nearline)
 - Expected performance
 - Up to ~25-30 Gbits/s for 1 transfer
 - Up to ~70-80 Gbits/s for 3 simultaneous transfers
 - Optimum conditions
 - File size of several GB+
 - 40+ files per transfer
- Offsite
 - Expected performance up to a few Gbits/s

Globus Online Transfer Options

- Checksums
 - Verify file integrity after transfer and resend if mismatch
 - On by default performance hit but best to leave it on
- Synchronization
 - Only transfer new or changed files
- See "more options" near the bottom left of GUI transfer window

UberFTP

- UberFTP: GridFTP client developed at NCSA
- Completely separate from GO
- Command-line interface to Nearline
- Interactive sessions take place on Blue Waters mover nodes
 - Simpler no endpoints to specify like with GO CLI
 - E.g. ncsa#Nearline/<path>
- What GO can't do: chmod, chgrp
- Avoid using for file transfers
- More info: https://bluewaters.ncsa.illinois.edu/nearline

Other Filesystem Notes

- Moving files on Nearline
 - GO transfers through GUI and CLI only copy
 - Two methods
 - GO CLI rename
 - UberFTP rename
- Deleting large numbers of files takes a long time with GO
 - 1,000,000-file rm -r
 - ~10-15 minutes on /scratch
 - 1,000,000-file GO delete
 - ~40 minutes on /scratch
 - ~17 hours on Nearline

Rules of Thumb for Data Transfers

- Don't use scp, rsync, or sftp
- Use UberFTP for chmod and chgrp
- Use GO CLI for scripts and moving files with rename
- Otherwise use GO GUI
- For onsite transfers
 - Transfer large files (several GB+)
 - Transfer 40 up to a few tens of thousands of files

Data Sharing

- Active Project Data Share Plan for active project allocations
 - May share from either Lustre or Nearline project storage
 - Shared files count toward quota
- Community Data Share Plan for groups without an active allocation
 - Shared from Nearline only
 - Still being implemented
- Globus Online interface
 - Any data set size, but especially large sets
 - Access control
- Web interface
 - Only for small data sets (< few hundred files; file size < 4 GB)
 - Fully public no access control
- More info on the portal: https://bluewaters.ncsa.illinois.edu/data-sharing